Volume 13, Issue 6
A Parallel Finite Element Algorithm for the Unsteady Oseen Equations

Qi Ding & Yueqiang Shang

Adv. Appl. Math. Mech., 13 (2021), pp. 1501-1519.

Published online: 2021-08

Preview Full PDF 20 5572
Export citation
  • Abstract

Based on fully overlapping domain decomposition, a parallel finite element algorithm for the unsteady Oseen equations is proposed and analyzed. In this algorithm, each processor independently computes a finite element approximate solution in its own subdomain by using a locally refined multiscale mesh at each time step, where conforming finite element pairs are used for the spatial discretizations and backward Euler scheme is used for the temporal discretizations, respectively. Each subproblem is defined in the entire domain with vast majority of the degrees of freedom associated with the particular subdomain that it is responsible for and hence can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding. The algorithm is easy to implement and has low communication cost. Error bounds of the parallel finite element approximate solutions are estimated. Numerical experiments are also given to demonstrate the effectiveness of the algorithm.

  • Keywords

Oseen equations, finite element, overlapping domain decomposition, backward Euler scheme, parallel algorithm.

  • AMS Subject Headings

68W10, 65M15, 76M10, 76D05

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{AAMM-13-1501, author = {Ding , Qi and Shang , Yueqiang}, title = {A Parallel Finite Element Algorithm for the Unsteady Oseen Equations}, journal = {Advances in Applied Mathematics and Mechanics}, year = {2021}, volume = {13}, number = {6}, pages = {1501--1519}, abstract = {

Based on fully overlapping domain decomposition, a parallel finite element algorithm for the unsteady Oseen equations is proposed and analyzed. In this algorithm, each processor independently computes a finite element approximate solution in its own subdomain by using a locally refined multiscale mesh at each time step, where conforming finite element pairs are used for the spatial discretizations and backward Euler scheme is used for the temporal discretizations, respectively. Each subproblem is defined in the entire domain with vast majority of the degrees of freedom associated with the particular subdomain that it is responsible for and hence can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding. The algorithm is easy to implement and has low communication cost. Error bounds of the parallel finite element approximate solutions are estimated. Numerical experiments are also given to demonstrate the effectiveness of the algorithm.

}, issn = {2075-1354}, doi = {https://doi.org/10.4208/aamm.OA-2019-0270}, url = {http://global-sci.org/intro/article_detail/aamm/19432.html} }
TY - JOUR T1 - A Parallel Finite Element Algorithm for the Unsteady Oseen Equations AU - Ding , Qi AU - Shang , Yueqiang JO - Advances in Applied Mathematics and Mechanics VL - 6 SP - 1501 EP - 1519 PY - 2021 DA - 2021/08 SN - 13 DO - http://doi.org/10.4208/aamm.OA-2019-0270 UR - https://global-sci.org/intro/article_detail/aamm/19432.html KW - Oseen equations, finite element, overlapping domain decomposition, backward Euler scheme, parallel algorithm. AB -

Based on fully overlapping domain decomposition, a parallel finite element algorithm for the unsteady Oseen equations is proposed and analyzed. In this algorithm, each processor independently computes a finite element approximate solution in its own subdomain by using a locally refined multiscale mesh at each time step, where conforming finite element pairs are used for the spatial discretizations and backward Euler scheme is used for the temporal discretizations, respectively. Each subproblem is defined in the entire domain with vast majority of the degrees of freedom associated with the particular subdomain that it is responsible for and hence can be solved in parallel with other subproblems using an existing sequential solver without extensive recoding. The algorithm is easy to implement and has low communication cost. Error bounds of the parallel finite element approximate solutions are estimated. Numerical experiments are also given to demonstrate the effectiveness of the algorithm.

Qi Ding & YueqiangShang. (1970). A Parallel Finite Element Algorithm for the Unsteady Oseen Equations. Advances in Applied Mathematics and Mechanics. 13 (6). 1501-1519. doi:10.4208/aamm.OA-2019-0270
Copy to clipboard
The citation has been copied to your clipboard