- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Homoclinic Orbit in a Six Dimensional Model of a Perturbed Higher-order NLS Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-16-18,
author = {},
title = {Homoclinic Orbit in a Six Dimensional Model of a Perturbed Higher-order NLS Equation},
journal = {Journal of Partial Differential Equations},
year = {2003},
volume = {16},
number = {1},
pages = {18--28},
abstract = { In this paper, the perturbed higher-order NLS equation with periodic boundary condition is considered. The existence of the homoclinic orbits for the truncation equation is established by Melnikov analysis and geometric singular perturbation theory.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5402.html}
}
TY - JOUR
T1 - Homoclinic Orbit in a Six Dimensional Model of a Perturbed Higher-order NLS Equation
JO - Journal of Partial Differential Equations
VL - 1
SP - 18
EP - 28
PY - 2003
DA - 2003/02
SN - 16
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5402.html
KW - homoclinic
KW - higher-order NLS equation
KW - perturbation
AB - In this paper, the perturbed higher-order NLS equation with periodic boundary condition is considered. The existence of the homoclinic orbits for the truncation equation is established by Melnikov analysis and geometric singular perturbation theory.
Boling Guo & Hanlin Chen . (2019). Homoclinic Orbit in a Six Dimensional Model of a Perturbed Higher-order NLS Equation.
Journal of Partial Differential Equations. 16 (1).
18-28.
doi:
Copy to clipboard