- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988
Initial Boundary Value Problem for a Damped Nonlinear Hyperbolic Equation
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{JPDE-16-49,
author = {},
title = {Initial Boundary Value Problem for a Damped Nonlinear Hyperbolic Equation},
journal = {Journal of Partial Differential Equations},
year = {2003},
volume = {16},
number = {1},
pages = {49--61},
abstract = { In the paper, the existence and uniqueness of the generalized global solution and the classical global solution of the initial boundary value problems for the nonlinear hyperbolic equation u_{tt} + k_1u_{xxxx} + k_2u_{xxxxt} + g(u_{xx})_{xx} = f(x, t) are proved by Galerkin method and the sufficient conditions of blow-up of solution in finite time are given.},
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5405.html}
}
TY - JOUR
T1 - Initial Boundary Value Problem for a Damped Nonlinear Hyperbolic Equation
JO - Journal of Partial Differential Equations
VL - 1
SP - 49
EP - 61
PY - 2003
DA - 2003/02
SN - 16
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5405.html
KW - Nonlinear hyperbolic equation
KW - initial boundary value problem
KW - global solution
KW - blow-up of solution
AB - In the paper, the existence and uniqueness of the generalized global solution and the classical global solution of the initial boundary value problems for the nonlinear hyperbolic equation u_{tt} + k_1u_{xxxx} + k_2u_{xxxxt} + g(u_{xx})_{xx} = f(x, t) are proved by Galerkin method and the sufficient conditions of blow-up of solution in finite time are given.
Guowang Chen . (2019). Initial Boundary Value Problem for a Damped Nonlinear Hyperbolic Equation.
Journal of Partial Differential Equations. 16 (1).
49-61.
doi:
Copy to clipboard