- Journal Home
- Volume 37 - 2024
- Volume 36 - 2023
- Volume 35 - 2022
- Volume 34 - 2021
- Volume 33 - 2020
- Volume 32 - 2019
- Volume 31 - 2018
- Volume 30 - 2017
- Volume 29 - 2016
- Volume 28 - 2015
- Volume 27 - 2014
- Volume 26 - 2013
- Volume 25 - 2012
- Volume 24 - 2011
- Volume 23 - 2010
- Volume 22 - 2009
- Volume 21 - 2008
- Volume 20 - 2007
- Volume 19 - 2006
- Volume 18 - 2005
- Volume 17 - 2004
- Volume 16 - 2003
- Volume 15 - 2002
- Volume 14 - 2001
- Volume 13 - 2000
- Volume 12 - 1999
- Volume 11 - 1998
- Volume 10 - 1997
- Volume 9 - 1996
- Volume 8 - 1995
- Volume 7 - 1994
- Volume 6 - 1993
- Volume 5 - 1992
- Volume 4 - 1991
- Volume 3 - 1990
- Volume 2 - 1989
- Volume 1 - 1988

The Jump Conditions for Second Order Quasilinear Degenerate Parabolic Equations

Cited by

Export citation

- BibTex
- RIS
- TXT

@Article{JPDE-3-39,
author = {Wang Junyu},
title = {The Jump Conditions for Second Order Quasilinear Degenerate Parabolic Equations},
journal = {Journal of Partial Differential Equations},
year = {1990},
volume = {3},
number = {3},
pages = {39--48},
abstract = { ln this paper we consider the model problem for a second order quasilinear degenerate parabolic equation {D_xG(u) = t^{2N-1}D²_xK(u) + t^{N-1}D_x,F(u) \quad for \quad x ∈ R,t > 0 u(x,0) = A \quad for \quad x < 0, u(x,0) = B \quad for \quad x > 0 where A < B, and N > O are given constants; K(u) =^{def} ∫^u_Ak(s)ds, G(u)=^{def} ∫^u_Ag(s)ds, and F(u) =^{def} ∫^u_Af(s)ds are real-valued absolutely continuous functions defined on [A, B] such that K(u) is increasing, G(u) strictly increasing, and \frac{F(B)}{G(B)}G(u) - F(u) nonnegative on [A, B]. We show that the model problem has a unique discontinuous solution u_0 (x, t) when k(s) possesses at least one interval of degeneracy in [A, B] and that on each curve of discontinuity, x = z_j(t) =^{def} s_jt^N, where s_j= const., j=l,2, …, u_0(x, t) must satisfy the following jump conditions, 1°. u_0(z_j(t) - 0, t) = a_j, u_0 (z_j(t) + 0, t) = b_j, and u_0(z_j(t) - 0, t) = [a_j, b_j] where {[a_j, b_j]; j = 1, 2, …} is the collection of all intervals of degeneracy possessed by k (s) in [A, B], that is, k(s) = 0 a. e. on [a_j, b_j], j = 1, 2, …, and k(s) > 0 a. e. in [A, B] \U_j[a_j, b_j], and 2°. (z_j(t)G(u_0(x, t)) + t^{2N-1}D_xK(u_0(x, t)) + t^{N-1}F(u_0(x, t)))|\frac{s=s_j+0}{s=s_j-0} = 0 },
issn = {2079-732X},
doi = {https://doi.org/},
url = {http://global-sci.org/intro/article_detail/jpde/5804.html}
}

TY - JOUR
T1 - The Jump Conditions for Second Order Quasilinear Degenerate Parabolic Equations
AU - Wang Junyu
JO - Journal of Partial Differential Equations
VL - 3
SP - 39
EP - 48
PY - 1990
DA - 1990/03
SN - 3
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/jpde/5804.html
KW - Second order quasilinear degenerate parabolic equation
KW - discontinuous solution
KW - jump condition
KW - two-point boundary value problem
AB - ln this paper we consider the model problem for a second order quasilinear degenerate parabolic equation {D_xG(u) = t^{2N-1}D²_xK(u) + t^{N-1}D_x,F(u) \quad for \quad x ∈ R,t > 0 u(x,0) = A \quad for \quad x < 0, u(x,0) = B \quad for \quad x > 0 where A < B, and N > O are given constants; K(u) =^{def} ∫^u_Ak(s)ds, G(u)=^{def} ∫^u_Ag(s)ds, and F(u) =^{def} ∫^u_Af(s)ds are real-valued absolutely continuous functions defined on [A, B] such that K(u) is increasing, G(u) strictly increasing, and \frac{F(B)}{G(B)}G(u) - F(u) nonnegative on [A, B]. We show that the model problem has a unique discontinuous solution u_0 (x, t) when k(s) possesses at least one interval of degeneracy in [A, B] and that on each curve of discontinuity, x = z_j(t) =^{def} s_jt^N, where s_j= const., j=l,2, …, u_0(x, t) must satisfy the following jump conditions, 1°. u_0(z_j(t) - 0, t) = a_j, u_0 (z_j(t) + 0, t) = b_j, and u_0(z_j(t) - 0, t) = [a_j, b_j] where {[a_j, b_j]; j = 1, 2, …} is the collection of all intervals of degeneracy possessed by k (s) in [A, B], that is, k(s) = 0 a. e. on [a_j, b_j], j = 1, 2, …, and k(s) > 0 a. e. in [A, B] \U_j[a_j, b_j], and 2°. (z_j(t)G(u_0(x, t)) + t^{2N-1}D_xK(u_0(x, t)) + t^{N-1}F(u_0(x, t)))|\frac{s=s_j+0}{s=s_j-0} = 0

Wang Junyu. (1990). The Jump Conditions for Second Order Quasilinear Degenerate Parabolic Equations.

Copy to clipboard
*Journal of Partial Differential Equations*.*3*(3). 39-48. doi: